RECOGNISING ACHIEVEMENT

ADVANCED SUBSIDIARY GCE UNIT MATHEMATICS

Morning
Time: 1 hour 30 minutes

Additional Materials: Answer Booklet (8 pages)
List of Formulae (MF1)

INSTRUCTIONS TO CANDIDATES

- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72 .

ADVICE TO CANDIDATES

- Read each question carefully and make sure you know what you have to do before starting your answer.
- You are reminded of the need for clear presentation in your answers.

1 Part of the probability distribution of a variable, X, is given in the table.

x	0	1	2	3
$\mathrm{P}(X=x)$		$\frac{3}{10}$	$\frac{1}{5}$	$\frac{2}{5}$

(i) Find $\mathrm{P}(X=0)$.
(ii) Find $\mathrm{E}(X)$.

2 The table contains data concerning five households selected at random from a certain town.

Number of people in the household	2	3	3	5	7
Number of cars belonging to people in the household	1	1	3	2	4

(i) Calculate the product moment correlation coefficient, r, for the data in the table.
(ii) Give a reason why it would not be sensible to use your answer to draw a conclusion about all the households in the town.

3 The digits 1, 2, 3, 4 and 5 are arranged in random order, to form a five-digit number.
(i) How many different five-digit numbers can be formed?
(ii) Find the probability that the five-digit number is
(a) odd,
(b) less than 23000 .

4 Each of the variables W, X, Y and Z takes eight integer values only. The probability distributions are illustrated in the following diagrams.

(i) For which one or more of these variables is
(a) the mean equal to the median,
(b) the mean greater than the median?
(ii) Give a reason why none of these diagrams could represent a geometric distribution.
(iii) Which one of these diagrams could not represent a binomial distribution? Explain your answer briefly.

5 A chemical solution was gradually heated. At five-minute intervals the time, x minutes, and the temperature, $y^{\circ} \mathrm{C}$, were noted.

x	0	5	10	15	20	25	30	35
y	0.8	3.0	6.8	10.9	15.6	19.6	23.4	26.7

$$
\left[n=8, \Sigma x=140, \Sigma y=106.8, \Sigma x^{2}=3500, \Sigma y^{2}=2062.66, \Sigma x y=2685.0 .\right]
$$

(i) Calculate the equation of the regression line of y on x.
(ii) Use your equation to estimate the temperature after 12 minutes.
(iii) It is given that the value of the product moment correlation coefficient is close to +1 . Comment on the reliability of using your equation to estimate y when
(a) $x=17$,
(b) $x=57$.

6 A coin is biased so that the probability that it will show heads on any throw is $\frac{2}{3}$. The coin is thrown repeatedly.

The number of throws up to and including the first head is denoted by X. Find
(i) $\mathrm{P}(X=4)$,
(ii) $\mathrm{P}(X<4)$,
(iii) $\mathrm{E}(X)$.

7 A bag contains three $1 p$ coins and seven $2 p$ coins. Coins are removed at random one at a time, without replacement, until the total value of the coins removed is at least $3 p$. Then no more coins are removed.
(i) Copy and complete the probability tree diagram.

First coin

Find the probability that
(ii) exactly two coins are removed,
(iii) the total value of the coins removed is 4 p .

8 In the 2001 census, the household size (the number of people living in each household) was recorded. The percentages of households of different sizes were then calculated. The table shows the percentages for two wards, Withington and Old Moat, in Manchester.

	Household size						
	1	2	3	4	5	6	7 or more
Withington	34.1	26.1	12.7	12.8	8.2	4.0	2.1
Old Moat	35.1	27.1	14.7	11.4	7.6	2.8	1.3

(i) Calculate the median and interquartile range of the household size for Withington.
(ii) Making an appropriate assumption for the last class, which should be stated, calculate the mean and standard deviation of the household size for Withington. Give your answers to an appropriate degree of accuracy.

The corresponding results for Old Moat are as follows.

Median	Interquartile range	Mean	Standard deviation
2	2	2.4	1.5

(iii) State one advantage of using the median rather than the mean as a measure of the average household size.
(iv) By comparing the values for Withington with those for Old Moat, explain briefly why the interquartile range may be less suitable than the standard deviation as a measure of the variation in household size.
(v) For one of the above wards, the value of Spearman's rank correlation coefficient between household size and percentage is -1 . Without any calculation, state which ward this is. Explain your answer.

9 A variable X has the distribution $\mathrm{B}(11, p)$.
(i) Given that $p=\frac{3}{4}$, find $\mathrm{P}(X=5)$.
(ii) Given that $\mathrm{P}(X=0)=0.05$, find p.
(iii) Given that $\operatorname{Var}(X)=1.76$, find the two possible values of p.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

